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To Identify Associations with Rare Variants,
Just WHaIT: Weighted Haplotype and Imputation-Based Tests

Yun Li,1,2,* Andrea E. Byrnes,2 and Mingyao Li3

Empirical evidences suggest that both common and rare variants contribute to complex disease etiology. Although the effects of

common variants have been thoroughly assessed in recent genome-wide association studies (GWAS), our knowledge of the impact of

rare variants on complex diseases remains limited. A number of methods have been proposed to test for rare variant association in

sequencing-based studies, a study design that is becoming popular but is still not economically feasible. On the contrary, few (if any)

methods exist to detect rare variants in GWAS data, the data we have collected on thousands of individuals. Here we propose two

methods, a weighted haplotype-based approach and an imputation-based approach, to test for the effect of rare variants with GWAS

data. Both methods can incorporate external sequencing data when available. We evaluated our methods and compared them with

methods proposed in the sequencing setting through extensive simulations. Our methods clearly show enhanced statistical power

over existing methods for a wide range of population-attributable risk, percentage of disease-contributing rare variants, and proportion

of rare alleles working in different directions. We also applied our methods to the IFIH1 region for the type 1 diabetes GWAS data

collected by theWellcome Trust Case-Control Consortium. Ourmethods yield p values in the order of 10�3, whereas themost significant

p value from the existing methods is greater than 0.17. We thus demonstrate that the evaluation of rare variants with GWAS data is

possible, particularly when public sequencing data are incorporated.
Recent studies suggest that rare variants play an important

role in the etiology of complex traits,1,2 revealing that rare

variants generally have larger genetic effects than common

variants.3–6 There is also evidence that multiple rare vari-

ants together influence the risk of complex diseases,

making it sensible to combine information across them.

Although there is a lingering debate over the two schools

of hypothesis for the genetics underlying complex traits,

namely common disease common variants and common

disease rare variants, the community has now gradually

reached a consensus that both common and rare variants

contribute to the underlying genetic mechanism.7

However, unlike common variants, whose impact on

human diseases has been thoroughly evaluated in the

recent wave of genome-wide association studies (GWAS),

rare variants are largely waiting for the evaluation of their

impact. Rare variants are attracting increasing attention

from researchers for two major reasons. First, common

variants identified through GWAS only explain a small

proportion of the overall heritability, and rare variants

hold the promise to explain some of the missing herita-

bility.8–10 Second, massively parallel sequencing technolo-

gies have made it feasible to search after rare variants.2,11

In preparation for the coming wave of sequencing-based

studies, a number of methods have been proposed to test

for the effect of rare variants in aggregate.12–18 However,

whole-genome sequencing is still cost prohibitive, and

only a few groups can afford to sequence a relatively small

number of samples, limiting the statistical power to detect

association. On the other hand, little, if any, attention has

been given to GWAS data for the evaluation of rare vari-
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ants. There are good reasons for the lack of methods target-

ing at GWAS data. Analysis of directly assayed rare variants

is challenging statistically because methods developed for

common variants are underpowered. Commercial geno-

typing panels employed by GWAS were designed to cover

most of the common variants but have poor coverage of

rare variants, making the analysis even more challenging.

Now, with the publicly available data from the 1000

Genomes Project being rapidly generated and released,19,20

an attempt to detect rare variants with GWAS data is

worthy and holds promise before study-specific

sequencing data become widely available. We note that,

with GWAS data alone, extremely rare variants (for

example, singletons or study population private variants)

still cannot be evaluated. Our focus is on the analysis of

variants in the frequency range of 0.1%–5%, which have

not been adequately assessed in GWAS but can be better

captured either by haplotyping or with the aid of external

sequencing data by multimarker imputation.21–23

Here we propose two methods to search for the aggre-

gated effect of rare variants with GWAS data. Our

approaches do not rely on the availability of external

sequencing data, but they can incorporate such informa-

tion when available. Moreover, our methods make no

assumption on the direction of association of rare alleles

with disease risk. We applied our methods, along with ex-

isting methods proposed in the sequencing context, to

simulated data sets. Our methods demonstrated better

performance across a wide range of scenarios with an

average power improvement of 8.6% (31.6%) in the

absence (presence) of external sequencing data. We also
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applied our methods to the Wellcome Trust Case-Control

Consortium (WTCCC) type 1 diabetes (T1D [MIM

222100]) GWAS data set in the IFIH1 (MIM 606951) gene

region, where both common and multiple rare variants

have been found to influence the risk of T1D.2,24,25

Our first test is a weighted haplotype test. Assume

a sample of N diploid individuals is collected, among

whichNcs are affected cases andNct are unaffected controls.

Letm denote the number of genotyped markers in a region

of interest. Further denote haplotypes of the N individuals

byH¼ (H1,H2,.,Hi,.,HN)
t, whereHi¼ {Hi,1,Hi,2} are the

two haplotypes carried by the ith individual, consisting of

the m markers in the region. For each individual i, we

define a weighted haplotype score as follows:

WHSi ¼
X2
j¼1

WHi;j
;

in which the sum is taken over the two haplotypes of indi-

vidual i. Wh stands for the weight of haplotype h and is

defined as

Wh ¼ Iðh˛CÞ$ð�1ÞIðh˛PÞ$Sh;

in which C is the set of disease-contributing haplotypes

including both risk and protective haplotypes, P is the

set of disease-protective haplotypes (note that P is a subset

of C), and Sh is a score assigned to haplotype h. Following

the weighting scheme proposed by Madsen and Brown-

ing13 for SNPs, we define Sh as

Sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nct$fct;h$

�
1� fct;h

�r
;

in which fct,h denotes the adjusted frequency of haplotype

h among controls and is defined as

fct;h ¼
Cct;hþ1

2ðNct þ 1Þ ;

in which Cct,h is the number of haplotype h among

controls. The rationale of using such a score is that a rare

variant (most likely untyped in GWAS) is more likely to

be tagged by a rare haplotype than by a common haplo-

type, and thus rare haplotypes should receive more weight

in the analysis.

To define the sets of the disease-contributing and

disease-protective haplotypes, we first split the data into

a testing set and a training set and then compared the

haplotype frequencies between cases and controls in the

training set according to the formula below:

8>><
>>:

h˛C if j f trcs;h � f trct;h j > m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f tr
ct;hð1�f tr

ct;hÞ
2Ntr

ct

;

r

h˛P if f trcs;h � f trct;h < �m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f tr
ct;hð1�f tr

ct;hÞ
2Ntr

ct

;

r (Equation 1)

with tr standing for the training set. Here, m is a constant

that is determined by a prespecified type I error rate. For

example, m ¼ 1.28 (1.64) corresponds to a type I error of
The American
0.2 (0.1). Following Zhu et al.,14 we set m ¼ 1.28 and

randomly selected 30% of the samples for training in the

analysis.

We note that by explicitly modeling the two sets of

haplotypes as described above, we do not need to make

assumptions about the direction of association between

rare alleles and disease risk. Weighted haplotype scores

are calculated in the testing set after identifying the two

sets of haplotypes with the training set. To assess whether

the rare variants are significantly associated with the

disease, we can perform a standard Wilcoxon26 test on

the weighted haplotype scores and assess the significance

of the test by permutations. For each permuted data set,

the training set and the testing set will be obtained in

a similar fashion as the original data set.

Because typical GWAS data consist of genotypes rather

than haplotypes, we need to infer haplotypes from un-

phased genotypes. This step can be done via standard

phasing methods, including PHASE, fastPHASE, MaCH,

and Beagle.22,27–29 We used MaCH, which allows the

incorporation of external genotyping, haplotyping, or

sequencing data. Our weighted haplotype approach can

be applied to haplotypes consisting of GWAS markers

alone or to haplotypes including additional markers via

incorporation of external reference data.

Our second test is a weighted imputation dosage test.

Following the notations defined above, we assume that

there are a total ofMmarkers genotyped or sequenced after

the incorporation of one or more external data sets (e.g.,

the International HapMap Project30,31 or the 1000

Genomes Project19). We have previously described a

hidden Markov model-based method that imputes un-

typed markers in study samples by exploiting external

data as reference, which was implemented in software

MaCH and has become standard in GWAS analysis.32 Let

D ¼ (D1, D2, ., Di, ., DN)
t denote the dosage matrices

across M markers for the N study subjects, in which Di ¼
(Di,1, Di,2, ., Di,j, ., Di,M) denotes the dosages of the ith

individual. Here Dij is the dosage for the ith individual at

marker j, which is defined as the expected number of the

rare allele at marker j. Now we define the weighted dosage

score for each individual i as

WDSi ¼
XM
j¼1

Iðj˛MCÞ$ð�1ÞIðj˛MPÞ$Di;j;

in which the summation is taken over all M markers with
genotype dosage scores. Here MC is the set of markers

with the rare allele that contributes to disease risk, and

MP is the set of markers with the rare allele that decreases

disease risk. We define these two sets by examining

frequency difference between cases and controls, similar

to Equation 1 for the weighted haplotype test. After obtain-

ing the scores, the standardWilcoxon test is applied to test

for association with the disease, and its significance is as-

sessed via permutation.

We compared our proposed methods with the following

three methods proposed in the sequencing context.
Journal of Human Genetics 87, 728–735, November 12, 2010 729



Table 1. Abbreviation and Description of Tests Applied

Test Abbreviation Description

WDS Weighted dosage test on genotyped plus imputed
SNPs with external sequencing data

WHS Weighted haplotype test on genotyped plus
imputed SNPs with external sequencing data

WHG Weighted haplotype test on genotyped SNPs
only

HG Haplotype grouping test proposed by Zhu et al.14

WSall Original weighted SNP test aggregating evidence
over all (regardless of MAF) SNPs proposed by
Madsen and Browning13

WSrare Modified weighted SNP test aggregating evidence
over rare (MAF < 5%) SNPs only

RVC Rare variant collapsing method proposed by Li
and Leal12
(1) Weighted SNP Test (denoted by WS)13 is a weighted-

sum method in which rare alleles are aggregated and

weighted according to a function of minor allele frequency

among controls. Despite the fact that the method was

proposed as a test for ‘‘rare mutations,’’ it indeed sums

over all markers by giving smaller weight to alleles with

higher frequency. Although an omnibus regional-based

test that evaluates both common and rare variants is some-

times desired, here we are interested in a regional-based

test for rare variants only, assuming that common variants

have been thoroughly evaluated by large-scale GWAS.

Because of this, we compared our methods with both the

originally proposed test (denoted by WSall) and a modified

version of it (denoted by WSrare), in which only markers

with minor allele frequency (MAF) < 5% are included. (2)

Zhu and colleagues proposed a haplotype grouping

method (denoted by HG)14 that counts the number of

rare risky haplotypes for each individual and uses a Fisher’s

exact test for testing. (3) We also applied the rare variant

collapsing method (denoted by RVC) proposed by Li and

Leal,12 which groups each individual into one of two

groups: carrying any rare allele or not. Together with

case-control status, a 2 3 2 table is generated, and a stan-

dard test for contingency table (e.g., chi-square test for

independence) is applied. Table 1 lists the above-described

tests and their abbreviations.

We simulated 10,000 chromosomes for a series of 100

1 Mb regions with a coalescent model that mimics linkage

disequilibrium (LD) in real data, accounts for variations in

local recombination rates, and models population history,

consistent with the HapMap CEU (CEPH people from

Utah, USA) samples.33 We then took a random subset of

1000 simulated chromosomes (i.e., 500 individuals) to

serve as the external reference, mimicking the targeting

sample size for the 1000 Genomes Project. To generate

a set of GWAS markers in each region, we first randomly

picked 120 chromosomes, mimicking Phase II HapMap

CEU data. We then ascertained and thinned polymorphic

sites to match marker density and allele frequency spec-

trum of their real-data counterparts. Based on LDmeasures

calculated with the 120 chromosomes, we selected a set of

100 SNPs for each region that included 90 tagSNPs tagging

the largest number of SNPs and 10 additional SNPs picked

at random among the remaining SNPs. The final set of re-

tained SNPs (GWAS markers in the region) captured ~78%

of the common variants (MAF > 5%) at a conventional r2

cutoff of 0.8, similar to the real-data performance of the

Illumina HumanHap300 BeadChip SNP genotyping

platform.

Within each simulated 1Mb region, we picked an ~50 kb

region as the causal region in which we assume only rare

variants (variants with population MAF between 0.1%

and 5%) contribute to the disease risk. We randomly

selected d% of the rare variants in the causal region to be

causal, i.e., to influence disease risk. Among these rare vari-

ants, we further assume that r% of them increase disease

risk, whereas the remaining (100 – r)% decrease disease
730 The American Journal of Human Genetics 87, 728–735, Novemb
risk. To ensure that each variant only has a small contribu-

tion to the overall disease risk, we followed a model similar

to that proposed by Madsen and Browning.13 Specifically,

the contribution of each causal variant j to the overall

genotype relative risk (GRR) is defined as

GRRj ¼
�

PAR

ð1� PARÞ$MAFj
þ 1

�ð�1ÞIðxj¼1Þ
;

in which PAR is the population attributable risk and xj ¼ 1

indicates that the rare allele of marker j decreases disease

risk. Following Madsen and Browning,13 we used the

same marginal PAR for each causal variant, which intrinsi-

cally assumes that alleles with lower frequency have higher

GRR than alleles with higher frequency. In our 50 kb core

region, there are ~500 SNPs with MAF < 5%; the distribu-

tions of MAFs and GRRs (without loss of generality,

assuming all rare alleles increase disease risk) are shown

in Figure S1 available online.

To generate the chromosomes for an individual, we

randomly selected two chromosomes {H1, H2} from the re-

maining 9000 chromosomes that were not selected as

external reference. The disease status of the individual

was assigned according to

Pðaffected j fH1;H2gÞ ¼ f0 3
Y2
k¼1

Ymc

j¼1

GRR
IðHk;j¼ajÞ
j ;

in which f0 is the baseline penetrance and was fixed at 10%

in our simulations (1% and 5% were also evaluated and re-

sulted in similar patterns but with slight power loss), mc is

the number of causal SNPs, and aj is the rare allele of SNP j.

Sampling was repeated until the desired number of cases

and controls was reached. In our simulations, d took values

from 10% to 50% by an increment of 10%. Among the

disease risk influencing loci, we set the value of r, the

percentage of rare alleles increasing disease risk, at 5%,

20%, 50%, 80%, and 100%, respectively.
er 12, 2010



Figure 1. Comparison of Power by r, Percent of Rare Alleles in
the Causal Region that Increase Disease Risk
Power of all tests was assessed at the 5% level by using empirical
significance threshold determined by 1000 null data sets per
region. 50% of the rare alleles in the causal region were assumed
to contribute to disease risk (i.e., d fixed at 50%), and the PAR of
each contributing SNP was fixed at 0.5%.
For each of the 100 regions, two independent data sets

with 1000 cases and 1000 controls were simulated with

the model described above. In addition, five independent

null data sets of the same sample size were simulated,

assuming no genetic effect by randomly sampling 4000

chromosomes (i.e., 2000 individuals) from the pool of

9000 chromosomes. Average power was estimated based

on the 100 regions, which represent a wide range of LD

patterns. To account for local LD differences, we permuted

each of the null sets 200 times to obtain region-specific

empirical significant threshold. For the weighted haplo-

type analysis, we considered two versions: WHG, which

uses haplotypes consisting of GWAS SNPs only, and

WHS, which uses haplotypes encompassing both geno-

typed and imputed SNPs. For both the weighted haplotype

tests and the weighted dosage test, untyped SNPs with Rsq

(estimated imputation quality) < 0.3 were discarded from

subsequent analysis.22 In all analyses, we used haplotypes

reconstructed from the unphased genotypes and imputed

genotypes for markers that are not included on the

GWAS chip. Our methods (WHG, WHS, and WDS),

together with WSall, WSrare, HG, and RVC, were applied

to the 1000 null data sets within each region to determine

the region-specific empirical significance threshold,

ensuring the correct type I error rate of 0.05 for all tests.

Figure 1 shows the empirical power of our methods rela-

tive to the other four methods proposed in the sequencing

context as a function of r, the proportion of rare alleles

increasing disease risk, which ranges from 5% to 100%.

We fixed PAR at 0.5% and d (percent of disease-influencing
The American
rare variants) at 50%. Although the synergy assumption is

more reasonable for rarer alleles than for common alleles

because rarer alleles tend to disrupt gene function, our

knowledge regarding the direction of rarer alleles is still

limited. Therefore, methods robust to such an assumption

are desirable. Although all methods have decreased power

when rare alleles work in different directions, our methods

performed better by explicitly modeling the direction of

association. For example, compared with the haplotype

grouping (HG) method, the advantage of our weighted

haplotype method (WHG, on GWAS SNPs only without

the aid of external sequencing data) manifests more

when a larger proportion of the rare alleles is protective:

power gain is 9.1% when all of the rare alleles at disease-

contributing loci increase disease risk, and the power

gain increases to 20.7% when only 5% of the rare alleles

increase disease risk.

Our proposed tests increase power through two different

mechanisms: by using haplotypes to better capture infor-

mation for rare variants (mostly untyped in GWAS) and

by using external sequencing data to impute rare variants.

Let us consider the first mechanism by examining tests on

GWAS data alone, namely WHG, HG, WSall, WSrare, and

RVC. At GWAS level, haplotype-based methods clearly

manifest their advantages. Among the five methods, the

two haplotype-based methods (WHG and HG) rank as

the best two across the five scenarios presented in Figure 1.

Note thatWSall andWSrare can be viewed as special cases of

WDS, where the dosages only take values 0, 1, or 2 at

directly genotyped markers. Therefore, at the GWAS level,

haplotype-based methods are preferred over single-marker

dosage-based tests. This is because causal rare variants are

better captured by haplotypes constructed from GWAS

SNPs than by those SNPs themselves. Between the two

haplotype-based methods, our weighted haplotype

method (WHG) increases power by an average of 13.2%

over HG by weighting individual haplotypes (instead of

lumping them together into groups) and by explicitly

modeling the direction of association.

Next we consider the second mechanism by looking at

tests that incorporate external sequencing data, namely

WHS and WDS. Both are more powerful than WHG, the

best test based on GWAS data alone. The average power

gain of WHS and WDS over WHG is 3.8% and 22.0%,

respectively. At this pseudosequencing level (i.e., study

subjects imputed with SNPs of sequencing density),

a single-marker dosage-based test is more powerful than

haplotype-based methods. This is not surprising because,

at the pseudosequencing level, causal rare variants are

better captured by their imputed counterpart than by

haplotypes. The same applies to data at the sequencing

level (i.e., when study subjects are directly sequenced).

Of course, if there are genuine haplotype effects, we antic-

ipate that WHS will perform better. To quantify the extent

of better performance, we need more empirical data on the

distribution of genuine haplotype effects, which is beyond

the scope of this paper. Currently, we have little evidence
Journal of Human Genetics 87, 728–735, November 12, 2010 731



Figure 2. Comparison of Power by PAR
Power of all tests was assessed at the 5% level by using empirical
significance threshold determined by 1000 null data sets per
region. 50% of the rare alleles in the causal region were assumed
to contribute to disease risk (i.e., d fixed at 50%), and all contrib-
uting rare alleles were assumed to increase disease risk (i.e., r fixed
at 100%).

Figure 3. Comparison of Power by d, Percent of Disease-
Contributing Rare Variants
Power of all tests was assessed at the 5% level by using empirical
significance threshold determined by 1000 null data sets per
region. All rare alleles in the causal region were assumed to
increase disease risk (i.e., r fixed at 100%), and the PAR of each
contributing SNP was fixed at 0.5%.
even to convincingly conclude the presence of genuine

haplotype effects. Therefore, with the presence of external

sequencing data and under the assumption that single

variants cumulatively contribute to disease risk, we recom-

mend WDS over WHS.

Figure 2 and Figure 3 show the power of different tests

under situations with varying PAR and varying percentage

of disease-contributing rare variants. We fixed the value of

d (percentage of rare alleles influencing disease risk) at

100%. The value of r (percent of causal alleles increasing

disease risk) was fixed at 50% for Figure 2, and the per

SNP PAR was fixed at 0.5% for Figure 3. Although the

power decreases with decreasing PAR or decreasing

percentage of disease-contributing variants for all

methods, our WHG and WHS are comparable, if not

slightly better, than other alternatives, and our WDS is

more powerful than the other methods by utilizing

sequencing information from external data and explicitly

modeling the SNP-level dosages.

We note that tests on rare GWAS SNPs only (WSrare and

RVC) are less powerful in general, because at GWASmarker

density, a typical gene region may contain few, if any,

directly genotyped rare variants. In our simulations, 64

out of the 100 regions have no rare variants within the

~50 kb core causal regions. These tests, proposed in the

sequencing context, are thus not suitable for analyzing

GWAS data.

Encouraged by results from simulations, we applied our

methods to real data. Multiple common and rare variants

in IFIH1, a cytoplasmic helicase that mediates induction
732 The American Journal of Human Genetics 87, 728–735, Novemb
of interferon response to viral RNA, have been established

to influence risk of T1D. In particular, variants disrupting

IFIH1 function have been suggested to confer protection

from T1D.2 We took the WTCCC T1D data to search for

rare variants associated with T1D susceptibility. In the

WTCCC GWAS data set, 10 SNPs were found in the IFIH1

region, with four being monomorphic in both the T1D

set and the two control sets (NBS and 58C), leaving six

SNPs for analysis. These six SNPs and their allele frequen-

cies among cases and controls are tabulated in Table 2.

We applied our methods, along with the others, to this

data set. Because the common SNP rs1990760 (MAF >

30%) in IFIH1 has been found to influence T1D risk,24,25

we restricted our analysis to SNPs or haplotypes with

frequency < 5% to rule out signals due to LD with

rs1990760. Our goal is to assess whether there is any

residual association with T1D because of rare variants,

which have been ignored in the previous GWAS analysis.

We used the March 2010 release of 60 CEU individuals

from the 1000 Genomes Project as reference for imputa-

tion. We used SNPs in the ~50 kb IFIH1 gene region plus

2 Mb flanking on each side for phasing and imputation.

Again, we discarded imputed SNPs with Rsq < 0.3. For

the haplotype grouping method, the original test failed

in this data set because rare alleles in IFIH1 are associated

with decreased risk of T1D. P values based on 100,000

permutations are shown in Table 3. The p values from

our methods are in the order of 10�3, whereas the most

significant p value from existing methods is >0.17. This

example clearly demonstrates the importance of using
er 12, 2010



Table 2. Allele Frequencies of the Six Polymorphic SNPs in IFIH1

SNP 58C NBS T1D

rs3747517 27.66% 26.31% 24.16%

rs41463049 1.12% 1.06% 1.02%

rs6432714 1.18% 1.06% 1.02%

rs13023380 48.88% 47.46% 45.24%

rs7559103 0.17% 0.10% 0.00%

rs12479125 1.18% 1.06% 1.02%

Table 3. Permutation p Values, Based on 100,000 Permutations,
for the Association of Rare Variants in IFIH1 with T1D Risk in
WTCCC Data Set

Test p Value

WDS 0.00431

WHS 0.00738

WHG 0.00746

HG 1.000

WSrare 0.329

RVC 0.179
appropriate methods when searching for the effect of rare

variants with GWAS data.

In summary, we have proposed two tests to assess the

impact of multiple rare variants on disease risk. We show

through simulations and a real-data example that by maxi-

mally extracting information from GWAS data, as well as

the incorporation of publicly available sequencing data,

ourmethods provide an intermediate solution for the anal-

ysis of rare variants before study-specific sequencing data

become available. Our results suggest that at the GWAS

level, haplotype-based methods are more powerful, but at

the pseudosequencing level (i.e., GWAS data imputed

with publicly available sequencing data), a test based on

weighted sum of single-marker dosages is more powerful.

By assuming that we know the 50 kb causal region a pri-

ori, we may have overestimated the power in the simula-

tions. We thus repeated the experiment by extending the

test region to 100 kb (25 kb flanking region on either

side of the core region) and to 200 kb (75 kb flanking on

either side) to mimic the lack of knowledge on the lengths

of regulatory regions flanking a gene or an exon. We found

that the power difference is within 2%. In most situations,

power was slightly lower, but in a few situations, power

was slightly higher, because some variants in the

noncausal flanking region happen to tag the causal vari-

ants better because of LD. These results are not surprising,

because our methods can eliminate irrelevant SNPs or

haplotypes by comparing frequency differences between

cases and controls in the training data set.

The analysis of rare variants with GWAS data is chal-

lenging because of several reasons. First, SNPs picked by

the commonly used GWAS genotyping platforms have

poor coverage for rare variants in general. Second, we

have no catalog of rare variants in our genome, and our

knowledge regarding their impact on phenotypic varia-

tions is still limited. Third, traditional association tests

are suitable for the analysis of common variants but are

generally underpowered for the analysis of rare variants.

By utilizing LD information and incorporating publicly

available sequencing data, we show that hunting for rare

variants with GWAS data is possible.

Ourmethods are proposed for GWAS data, which are still

the most commonly available type of data for gene

mapping studies. In both our simulations and the real
The American
data analysis of T1D with gene IFIH1, we only have

GWAS data on the study subjects. We compared our

methods with alternatives proposed for sequencing data

and demonstrated that methods that are specifically tar-

geted for the analysis of rare variants in GWAS settings

such as ours perform much better than methods that are

developed for sequencing data. We note that our targeted

‘‘rare’’ variants (MAF 0.1%–5%) differ from those in

methods developed in the sequencing context (including

extremely rare variants with MAF < 0.5% or 0.1%). For

extremely rare variants (MAF < 0.5%), our methods are ex-

pected to have low power because of low phasing and

imputation quality with GWAS data. Although our

methods are proposed for GWAS data, they can be applied

directly to sequence data or to partially sequenced data in

which selected individuals under study are sequenced.

Therefore, our methods provide a useful alternative but

are not meant to replace existing methods, given funda-

mental differences in their targeted data type (GWAS

versus sequencing) and targeted MAF range. Because the

performance of our weighted imputation dosage test

depends critically on the imputation quality of rare vari-

ants (MAF < 5%), we decided to evaluate the quality in

real data from the FUSION project34 by masking and

imputing all rare variants in a subset of individuals with

constructed haplotypes encompassing both common and

rare variants from an independent set of FUSION individ-

uals (of varying sizes) as reference. We found that imputa-

tion quality for rare variants improves when the sample

size in the reference panel increases. For example, the accu-

racy among the heterozygotes (r2) increases from 83.4%

(74.3%) to 97.0% (92.9%) when the number of reference

haplotypes increases from 60 to 1000 (Figure S2).

Our methods and others evaluated in this study were

developed for the analysis of rare variants, but we have

found that inclusion of common variants can increase

the power (data not shown). This is demonstrated by the

superior performance of WSall (test that includes all vari-

ants) over WSrare (test that only includes rare variants),

even though only rare variants that contribute to disease

risk were included in our simulations. This is not entirely

surprising, because common variants or haplotypes can

carry some information of untyped rare variants. One
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major issue of including common variants in testing is

misclassification, that is, inclusion of variants that do not

contribute to disease risk. However, by searching for

frequency difference in a training set, our methods can

alleviate this misclassification issue. In general, we recom-

mend testing common variants first, for instance, via stan-

dard single-marker test. If there is no evidence of associa-

tion with common variants, we then search the entire

MAF space for the effect of rare variants. When common

variants are found to be associated (such as in the IFIH1

example), we should restrict our attention to rare variants

or haplotypes only to alleviate the residual effects of

common variants.

Both of our tests assess the effect of multiple variants in

aggregate in a predefined genomic region, typically

a known gene annotated by RefSeq or other gene annota-

tions. For real-life GWAS data, we recommend performing

the tests for all known genes if no prior knowledge exists or

for a list of one or more candidate genes in the presence of

such knowledge. We note that the weighted dosage-based

test is more flexible than the haplotype-based test in that it

can be used to test for an arbitrary set of SNPs (for example,

nonsynonymous rare SNPs in a pathway), which may

involve SNPs on different chromosomes.

One issue with the haplotype-based test is that the

haplotypes are not known but instead are inferred with

uncertainty. Fortunately, most phasing methods,

including PHASE andMaCH, can estimate the probabilities

of possible haplotype configurations for each individual in

addition to providing the best-guess haplotypes. With

these estimates, we can easily model the phasing uncer-

tainty into our weighted haplotype test by allowing

possible haplotype configurations of each individual to

contribute to the haplotype frequency estimates, as well

as to the weighted haplotype score, according to their esti-

mated probabilities. An alternative approach is to perform

multiple imputation on 5–10 imputed data sets.35 Note

that each imputed data set has to be drawn from a different

posterior distribution to ensure proper multiple imputa-

tion. This can be achieved either by imputing from

different reference sets (for example, from bootstrap

samples of the HapMap or 1000 Genomes reference set)

or by drawing from different iteration in a full Bayesian

framework in which the model parameters are also up-

dated in each iteration. Neither approach had noticeable

impact on the IFIH1 real data set, but further work is war-

ranted.

Both of our proposed tests can be extended to analyze

quantitative traits and to accommodate covariates. Both

of our tests, in a nutshell, derive one ‘‘genetic score’’ for

each individual and assess the association between the

genetic score and phenotype of interest. The genetic score

is a weighted sum of contributing SNP dosages or haplo-

types. Although the weights are defined for dichotomous

trait in this work, we can easily extend the work to quanti-

tative traits by first estimating the weights, for the very

simple example, via regression, then deriving the genetic
734 The American Journal of Human Genetics 87, 728–735, Novemb
score accordingly, and finally performing the association

testing. In the above general setting, covariates can be

conveniently incorporated.
Supplemental Data

Supplemental Data include two figures and can be found with this

article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes Project, http://www.1000genomes.org/

1000 Genomes Reference March 2010 Release Original Data, ftp://

ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/

2010_03/pilot1/

1000 Genomes Reference March 2010 ReleaseMaCH Format Data,

http://www.sph.umich.edu/csg/abecasis/mach/download/

MaCH: Markov Chain-Based Haplotyper, http://www.sph.umich.

edu/csg/abecasis/mach/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

The International HapMap Project, http://hapmap.ncbi.nlm.nih.

gov/

WHaIT: Weighted Haplotype and Imputation-Based Test, http://

www.sph.umich.edu/csg/yli/whait/
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